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2.6 MICROPILES

INTRODUCTION AND HISTORY

Background

Between 1993 and 1996, the Federal Highway Administration (FHWA) funded
the single most significant and comprehensive review of global micropile practice so far
conducted. This effort also underlined the desire of the FHWA to contribute to a
contemporary French national research project’s five year effort named FOREVER
(Eondations REnforcées YERticalement) and designed to conduct a variety of integrated
experimental programs relating to micropiles. The FHWA study featured the formation
of an International Advisory Panel comprising specialists from North America and
Europe. Foremost amongst the members was Prof. Fernando Lizzi, of Naples, Italy
acknowledged as the “god father” of micropiles as defined herein,

No only did this group ensure that a comprehensive review of practice was
conducted, but also they were able to resolve a number of fundamental issues regarding
various aspects of the classification, design, construction and performance of micropiles.
These issues had been a source of confusion and misunderstanding and had therefore
restricted the use of micropiles in certain engineering circles.

This review therefore introduces certain novel concepts which the reader may
find somewhat different from standard descriptions on micropiles, including those such
as Welsh (1987), and Bruce (1994). However, this new approach has received
international  concurrence, and is also being incorporated in the FHWA’s

“Implementation Manual” currently being prepared for use by State Departments of
Transportation (1997).

Scope

Micropiles -are, generically, small-diameter, bored, grouted-in-place piles
incorporating steel reinforcement, They have been used throughout the world for
various purposes, and this has spawned a profusion of national and local names,
including pali radice, micropali (Italian), pieux racines, pieux aiguilles, minipieux,
micropieux (French), minipile, micropile, pin pile, root pile, needle pile (English),
Verpresspfihle and Wurzelpfihle (German) and Estaca Raiz (Portuguese).  All,

however, refer to the “special type of small diameter bored pile” as discussed by Koreck
(1978).

Such a pile can withstand axial and/or lateral loads, and may be considered as
cither one component in a composite soil/pile mass or as a small diameter substitute for
a conventional pile, depending on the design concept. Inherent in their genesis and
application is the precept that micropiles are installed with methods that cause minimal
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disturbance to structure, soil and environmental. This therefore excluded other related
techniques from the FHWA study such as those that employ percussive or explosive
energy (driven elements), ultra-high flushing and/or grouting pressures (jet piles) or
large diameter drilling techniques that can easily cause lateral soil decompression (auger
cast piles). In addition, the new developments being made with compaction grout piles
have not yet been published, and so the details remain in the hands of the contractors
involved.

Micropile construction techniques are amongst those used to install soil-nails -
sub-horizontal in situ reinforcements used in excavation support and slope stabilization
(Fig. 2.6-1). However, soil nailing was regarded in concept, design, and function to be
beyond the scope of the report and had already been the subject of major federal
(NCHRP 1987, FHWA 1994) and private studies (Juran and Elias 1990, and Bruce
1993).
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Fig. 2.6-1. Overlap of in situ reinforcement applications: (a) nails, and (b) micropi_les.
in excavations; (c) micropiles, and (d) nails, for general slope stabilization;

and (e) dowels to stabilize residual slips in clay (Bruce and Jewell 1986,

1987).
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Historical Note

The technology of micropiling was conceived in Italy in 1952 and introduced
over two decades later into the United States (Bruce 1988, 1989). After a relatively
slow start, the technology was widely applied by the late 1980's, especially in the eastern
United Sates with an intensity mirroring that in Western Europe and South East Asia.
Since that time, micropiling has spread both geographically and functionally within
North America so that it is now equally common in California for seismic retrofits, and
in the southern states and the Caribbean for slope stabilization. Overseas, renewed
interest in the potential of micropiles in the aftermath of the Hanshin Earthquake in early
1995 has led to the formation of the Japanese Micropile Association in early 1997,

FUNDAMENTAL CONCEPTS

Characteristics and Definitions

Typical overviews of bearing pile types (e.g., by Fleming et al. 1985) begin by
making the distinction between displacement and replacement types. Piles which are
driven are termed displacement piles because their installation methods displace
laterally the soils through which they are introduced. Conversely, piles that are formed
by creating a borehole into which the pile is then cast or placed, are referred to as
replacement piles because existing material, usually soil, is removed as part of the
process. Micropiles are a small-diameter subset of cast-in-place replacement piles.

With conventional cast-in-place replacement piles, in which most, and
occasionally all, the load is resisted by concrete as opposed to steel, small cross-
sectional area is synonymous with low structural capacity. Micropiles, however, are
distinguished by not having followed this pattern: innovative and vigorous drilling and
grouting methods like those developed in related geotechnical practices such as ground
anchoring, permit high grout/ground bond values to be generated along the micropiles’s
periphery. To exploit this potential benefit, therefore, high capacity steel elements,
occupying up to 50 percent of the hole volume, can be used as the principal (or sole)
load bearing element, with the surrounding grout serving only to transfer, by friction,
the applied load between the soil and the steel, End-bearing is not relied upon, and in
any event, is relatively insignificant given the pile geometries involved (Fig. 2.6-2).
Early micropile diameters were around 100 mm (4 in), but with the development of
more powerful drilling equipment, diameters of up to 300 mm(12 in) are now considered
practical. ~ Thus, micropiles are capable of sustaining surprisingly high loads
(compressive loads of over 5000 kN (1120 kips) have been recorded), or conversely, can
resist lower loads with minimal movement.

The development of highly specialized drilling equipment and methods also
allows micropiles to be drilled through virtually every ground condition, natural and
artificial, with minimal vibration, disturbance and noise, and at any angle below
horizonal. Micropiles are therefore used widely for underpinning existing structures,
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i - the piles are not heavily reinforced since they are not individually and
ﬁifeczﬂ: :igacf:celfe;ath; they circumscribe a zone of rcinforc:ed, composite, cogﬁncd
material that offers resistance with minimal movement. The PIICS are fully bonde ;Ner
their entire length and so for this case to work, the soil over its entire profile musth ave
some reasonable degree of competence. Lizzi’s research (1982) has shown t ag_a
positive “network effect” is achieved in terms of lo_ndlm‘o\{ement Perfg:mancc, such is
the effectiveness and efficiency of the reticulated pile/soil interaction in the composite
mass.
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Fig. 2.6-3. Fundamental classification of micropiles based on their supposed interaction
with the soil.
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It is clear, therefore, that the basis of design for & CASE 2 network is radically
different from a CASE 1 pile (or group of piles). Notwithstanding this difference,
however, there will be occasions where there are applications transitional between these
cases. For example, it may be possible to achieve a positive group effect in CASE 1
designs (although this attractive possibility is currently, conservatively, ignored for pile
groups), while a CASE 2 slope stability structure may have to consider direct pile
loading conditions (in bending or shear) across well defined slip planes. By recognizing
these two basic design philosophies, even those transitional cases can be designed with
appropriate engineering clarity and precision.

This classification also permits us to accept and rationalize the often
contradictory opinions, made in the past about micropile fundamentals by their
respective champions. For example, Lizzi (1982), whose intuitive focus is CASE 2
piles, was understandably an opponent of the practice of preloading high capacity
micropiles, such as those described by Mascardi (1982) and Bruce (1992). These latter
piles are now recognized as being of a different class of performance, in which complete
pile/soil contact and interaction is not fundamental to their proper behavior. The

advocates of these high capacity CASE 1 piles, in turn, now can appreciate the subtlety
and potential of the CASE 2 philosophy.

The successive steps in constructing
micropiles are, simply:

° Drill;
° Place reinforcement; and

Place and typically pressurize grout (usually involving extraction of temporary
steel drill casing).

There is no question that the drilling method and technique will affect the
magnitude of the grout/ground bond which can be mobilized, On the other hand, the act
of placing the reinforcement cannot be expected to influence this bond development,
Generally, however, international practice both in micropiles (e.g., French Norm DTU
13.2, 1992) and ground anchors (e.g., British Code BS 8081, 1989) confirms that the
method of grouting is generally the most sensitive construction control over
grout/ground bond development. The following classification of micropile type, based
primarily on the type and pressure of the grouting is therefore adopted. It is shown
schematically in Fig. 2.6-4.

. Type A: Grout is placed in the pile under gravity head only. Since the grout

column is not pressurized, sand-cement “mortars”, as well as neat cement grouts,
may be used. The pile drill hole may have an underreamed base (largely to aid
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performance in tension), but this is now very rare and not encountered in any
other micropile type.

° Type B: Neat cement grout is injected into the drilled hole as the temporary
steel drill casing or auger is withdrawn. Pressures are typically in the range of
0.3 to 1 MPa (6 to 20 ksf), and are limited by the ability of the soil to maintain
a grout tight “seal” around the casing during its withdrawal, and the need to
avoid hydrofracture pressures and/or excessive grout consumptions.

) Type C: Neat cement grout is placed in the hole as for Type A. Between 15 and
25 minutes later, and so before hardening of this primary grout, similar grout is
injected, once, via a preplaced sleeved grout pipe at a pressure of at least 1 MPa
(20 ksf). This type of pile, referred to in France as IGU (Injection Globale et
Unitaire), seems to be common practice only in that country,

° Type D: Neat cement grout is placed in the hole as for Type A. Some hours
later, when this primary grout has hardened, similar grout is injected via a
preplaced sleeved grout pipe. In this case, however, a packer is used inside the
sleeved pipe so that specific horizons can be treated, several times if necessary,
at pressures of 2 to 8 MPa (40 to 160 ksf). This is referred to in France as IRS
(Injection Répétitive et Sélective), and is common practice worldwide.

Fig. 2.6-4. Classification of micropile based on type of grouting.
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Table 2.6-1 provides more details about this classification and also indicates the
relationship between other proposed classifications and terminologies.

Combined Classification. Micropiles can therefore be allocated a classification number
denoting the philosophy of behavior (CASE 1 or CASE 2), which relates fundamentally
to the design approach, and a letter denoting the method of grouting (Type A, B, C, or
D), which reflects the major gonstructional control over capacity.

For example, a repeatedly post-grouted micropile used for direct structural underpinning

is referred to as Type 1D, whereas a gravity grouted micropile used as part of a
stabilizing network is Type 2A,

Applications

Micropiles are used in two basic applications: as structural support and as in situ
reinforcement (Fig. 2.6-5). For direct structural support, groups of micropiles are
designed on the CASE 1 assumptions, namely that the piles accept directly the applied
loads, and so act as substitutes for, or special versions of, more traditional pile types.
Such designs often demand substantial individual pile capacities and so piles of
construction Types A (in rock or stiff cohesives), and B and D (in most soils) are most
commonly used.

Review of Appiications
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Fig. 2.6-5. Classification of micropile applications.
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For micropiles used as in situ reinforcement, the original CASE 2 network
fmlurcd low capacity Type A piles. The rescarch by Pearlman et al. (1992) on groups
oE: piles, suggests that in certain conditions and arrangements, the piles themselves are
principally, directly, and locally subjected to bending and shearing forces. This would,

by definition, be a CASE 1 design approach. Such piles are usually highly reinforced
and of Type A or B only.

. V_\v’hercas CASE 1 and CASE 2 concepts alone or together can apply to slope
slal?tlwat:on and excavation support, generally only CASE 2 concepts apply to the other
major applications of in situ reinforcement. Little commercial work has been done in
zhgsc applications (with the exception of improving the structural stability of tall towers
.(F:g. 2.6-3b). However, the potential is real and the subject is being actively pursued
in t]:l: “FOREVER" program in France. Table 2.6-2 summarizes the link between
application, classification, design concept, and constructional method, It also provides
an indication of how common each application appears to be world-wide.

Table 2.6-2. Relationship between micropile application, design concept, and

construction type.
STRUCTURAL
APPLICATION SUPPORT IN-SITU EARTH REINFORCEMENT
Underpinning of
Sub. Existing Fi Antl Slopq

Stabilization Soil Settlement Structural

New Foundaticas and Strengthening |  Reduction Stabiliry
Excavation

Seismic Retrofitting Support

CASE | and
Design concept CASE 1 CASE 2 with | CASE 2 with CASE2 CASE2
transions | minor CASE 1

Type A (bond zones Type A
Coastruction type | in rock or stiff clays) | (CASE 1 and '
TypeBand Dinsoil | 2)and Type B | Type Aand B | Type Ainsoll | TypeAin soil
(Type C only in (CASE1)in in soil

France) soll
gltimllc of Probably 95% of Oto 5% Lessthan 1% | Nonelmown | Lessthan 1%
relative application total world to date
applications
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DESIGN CONCEFPTS

Volume 2 of the FHWA State of Practice Report (1996) deals with design. Itis
by far the largest and most complex volume of the five produced, and yet, in many ways,
it is the least definitive, such is the current status of design methods in general. The
approach adopted is as follows:

3 Design of single micropiles [i.e., CASE 1, axial and lateral loads (101 pages)]
»  Geotechnical (external) design
»  Structural (internal) design

¢ Design of Groups of Micropiles (CASE 1) (73 pages)

Experimental Observations

Axial Loading (Load and Movement Calculation)

Lateral Loading (Load and Deflection Calculation)

Combined Loading

Cyclic Loading

Specific Methods for Foundation Underpinning, In Situ Soil Reinforcement,
Slope Stabilization and Creeping Slopes

¢ Design of networks of micropiles (CASE 2) (7 pages)
» Foundation Underpinning
» Slope Stabilization

It is highly significant that the last section, dealing with CASE 2 structures, is
extremely small in relation to the other two (CASE 1) sections. This reflects how little
is actually known about CASE 2 design aspects, clearly highlights a major research
need, and goes a long way towards explaining their infrequent use to.date.

The static design methods for single CASE 1 piles draw from conventional bored
pile theory, prestressed ground anchor practice, and of course from the more limited
pool of micropile knowledge, per se. In competent soils, and in rock, the governing
capacity calculation is the internal structural capacity of the pile itself, such is the great
magnitude of grout/ground bond capacity which can be developed with contemporary
drilling and grouting methods. This therefore focuses attention on the size, nature and
yield strength of the reinforcement, assuming that the grout/steel bond [ultimate 1.5 MPa
(30 ksf) for plain bar, 3 MPa (60 ksf) for deformed bar] is not critical, and that the
contribution of the grout, in compression, is clearly defined (typical allowable design
stresses of 0 to 40 percent U,C.S.). Allowable design stresses for steel range to 50%f,.
Movement calculations are driven by the same factors, plus the “effective” free length,
i.e., that length below the head over which the pile reinforcement is actually being
compressed. In this regard, the research of Bruce et al. (1992) has shown how this
effective free length can be accurately calculated based on cyclic load-movement test
data. Table 2.6-3 summarizes some geotechnical design guidelines.
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Regarding groups, Lizzi (1982) showed, via laboratory tests, that for interpile
spacings of 2 to 7 pile diameters, the axial load bearing capacity of the pile group was _
up to 30 percent greater than the sum of the individual piles in that group. Although this 2
observation has been supported by numerous other researchers, no advantage appears ‘E’ .. . s iz ? . | s N
ta be taken of this “positive group effect” in contemporary micropile practice, although & £18 s | 23 |8 S
doubtless it does contribute to the surprisingly “stiff” response of micropile supported o g =
structures in practice. g
Progressing to networks of piles, Lizzi (1978) showed an even greater positive
group effect (Fig. 2.6-6). By reticulating the piles, the improvement over the same 7 =[5 d g £ g g %
number of piles in a vertical group was 32 percent, while the positive group effect, 2 E__.. E 5
relative to individual piles was 222 percent. These trends are being reevaluated by the k= s 1" q . o e - el 2 |WE
FOREVER team in France, and early results appear totally consistent, allowing for g E= | 2 R g :F |F
variations in ground type and model geometry. 8 2._— — ‘E
= Sl |z |5 - S ey || 2
For pile groups and networks, therefore, it can be concluded that there is a B 3 “IE |2 85?% . ~‘“§% e
certain degree of design rationale, backed by analytical and:experimental studies. & &
However, the extent of this rationale is small indeed compared to the great potential for 8 E a8 i.‘? é‘ 5‘ ;T § é
its application, in underpinning and slope stabilization schemes, both seismic and static. 8 -1 -
Herein lies the principal challenge to micropile researchers over the next few years. .E 3 N o e . o | » '....!
Sl 15 |5 B 5 B .&E
CONSTRUCTION o E
Fig. 2.6-7 illustrates the standard successive steps in the construction of a Type g A ERERE: 5| g 2|2
B micropile. As noted above, Type A piles are not subjected to excess pressure during 5
Primary grouting while Types C and D are pressure grouted at some point after the 3] —|a = > |z & k| 2
Primary grouting is completed. Highlights of the successive steps are as follows. g E9 L2 =z )= z 12
E S )
Drilling S ER 2 £ Rl § k|& |3
Laal
Where micropiles are to be installed through existing (reinforced) concrete or ﬁ é a |y N R 86 [ | 2
masonry footings, it is common to use high speed diamond drilling techniques to form 2 | L5E R 5 R R ES T o
an oversized hole, to permit the subsequent overburden drilling to commence, Diarmond E ] N
drilling typically provides a very smocth barehole wall and so, to enhance subsequent 5 a £ §‘ ;‘? g 53 s§
structure-pile load transfer, this interface is often “roughened up” using an appropriate 2 . E, S § in
tool. Alternatively, if it is environmentally and/or structurally permissible, a down-the- S . << = S .
hole hammer can be used to penetrate these existing structures. E Q % ré g g "ii 3 SRy
= g §
Thereafter, the technical and economic success of the job is largely dependent s g 1 v |3 ﬂq eden leol =
on the contractor’s ability to drill through the overburden, any obstructions (natural and . S o Ao |sEETERS RS 2
artificial), and into the bedrock if that is where the pile is to be founded, Thers are pu
fundamentally six generic methods of drilling overburder, as summarized in Table 2.6- J 857 <25 Bg| &3 .
4, and the most appropriate method is selected with respect to the site, the subsurface S = %i + |23 %.i QE 23 252 zIEE
conditions, and the type and size of the pile. Bl ES Bigs E 3‘%5 Ela% % 3 - ga‘i ¥
3|5E 53. 421 CHIEIIN N O
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Fig. 2.6-7. Typical construction sequence for a Type A or B micropile.
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Drilling rigs are typically diesel- or electro-hydraulically powered, and may be
crawler or frame mounted. Special rigs have been developed for very restricted site
conditions, and these rigs, although they may be relatively small in width and/or height,
can provide considerable rotary power - essential for overburden drilling.

Drilling is most commonly conducted with water flush, although foam flush is
frequently used in very difficult drilling conditions (Bruce et al, 1992). Air flush should
only be permitted with extreme caution when drilling overburden in urban environments
for fear of causing pneumatic fissuring of the ground and structural distress.

Reinforcement

Reinforcement commenly consists of one or more steel bars, Grade 60 or 150.
Typical bar diameters range from 25 to 63 mm (1 to 2.5 in). Individual bar pieces are
coupled together in lengths, which depending on the site circumstances, may vary from

1 to over 6 m (3 to 20 ft). Centralizers, usually plastic, should be located at 3 m
intervals along each bar,

Alternatively the reinforcement can be in the form of a pipe section, with or

without additional central reinforcement for whole or part of the length. Pipe sections -
also used as the drill casing - are described in Table 2.6-5,

Table 2.6-5. Axial tension and compression loads fro API N-80 steel casing.

Casing OD 5-1/2 7 8-5/8
In/mm 139.7 1778 244.5
Wall Thickness 0.361 0.498 0.472
in/mm 9.17 12,65 11.99
Steel Area 5.83 1017 13.57
i /mnf 3,760 6,563 8,756
Yield Load 466 814 1,086
LLC_ILA;JRN 2075 3,619 4,829

A
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Grouting

Grouts used in the Primary injection phase are stable, and have high 28-day
unconfined compressive strengths - typically in excess of 25 MPa (500 ksf). In the
United States, neat water/cement mixes of w/c = 0.40 to 0.50 are common, whereas in
ather countries, sand/cement mixes are more widely used, especially where grout takes
into the surrounding formation (e.g., karstic limestone conditions) may be excessive.
Special ground and/or ground water chemistries may require the use of special cements,
but usually a Type I or IL is sufficient - Type III if higher early strength is required.
Additives are rarely necessary, although plasticizers are useful in very hot conditions or
when pumping distances are substantial. Mixing is best conducted in high speed, high
shear mixers.

Grout for Secondary operations - as in Type C and D piles - usually has a higher
wc ratio, to aid injection through the small-diameter pipework. It is reasoned in this
case that excess mix water is forced out of the system during penetration into the
ground, via the'phenomenon of pressure filtration, so that the in situ grout likely has a
composition closer to that of the Primary mix.

The Primary grouting of each micropile is always conducted as a continuous
operation to ensure the structural continuity of the grouting and prevent “necking.”

QA/QC AND TESTING

During Installation

Full details are to be maintained through all the construction processes to ensure
the final quality of the product. Of particular importance is the recording of all relevant
grout pressure-volume-depth-time data, since to a large extent, the grouting process is
the major construction determinant of the grout/ground bond capacity. Certain
contractors also favor testing the fluid grout (e.g., specific gravity, fluidity) prior to
injection, to ensure that the injected grout meets the specifications, since samples for

strength testing give only retrospective proof of the ability of the grout to reach the
specified quality.

After Installation

For axially-loaded CASE 1 piles, load tests are conducted on a representative
number of elements. It is common to use ASTM D 1143-81 (Compression) and ASTM
D 3689-87 (Tension) [ASTM 1995), although the information yield from both can be
greatly expanded by incrementally cycling the load, in the fashion of Performance
Anchor testing (PTI 1996). As shown in Fig, 2.6-8, such testing permits the total pile
movements to be partitioned into permanent and elastic components, so allowing
fundamental investigations into load transfer mechanisms. CASE 1 piles subjected to
lateral loading can be tested according to ASTM D 3966-81,
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Fig. 2.6-8. Elastic/permanent movement performance of Test Pile 1 and Test Pile 2,

Postal Square, Washington, D.C. (from Bruce 1992). 1in=25.4 mm, 1 kip
=448 kN,

There is no common, absolute set of acceptance criteria for CASE 1 axially-
loaded piles, although many “solutions” based on geometric analyses of load-total
movement curves have been proposed (Kulhawy et al. 1991), Optimally, the acceptance
criteria are selected project by project, with respect to short-term movement, and creep
performance. Analyzing pile load test data to meet, these criteria is best conducted with
the full insight afforded by cyclic loading programs.

CASE 2 piles, being part of a composite soil-pile mass are less meaningful to test
individually. Rather the behavior of the whole composite structure is monitored, for
example by inclinometers (in the case of a slope stabilization application) or movement
gauges (in the case of structural stability or settlement reduction applications).
Instrumentation of individual piles has been carried out (Palmerton 1984) but the data

have typically proved difficult to analyze, given the lack of knowledge of the actual
performance of such structures,

THE FUTURE

In the United States, as is the case worldwide, new geotechnical and structural
challenges for both static and seismic retrofit are fostering the continuing growth of
micropile technology. In particular, the demands of seismic engineering are provided
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new impetus to the study and understanding of pile performance, in general, and pile
networks especially.

Aided by the classification breakthrough made by FHWA (199§), rqzsca:chers in
the United States, France, and Japan are poised to close the gap that sn].l exists l_Jelwcen
the level of analytical understanding, and the excellence of the construction, testing, and
performance knowledge. One consequence will be a rapid growth in the application n?f
CASE 2 structures, optirnally and rigorously designed to ensure efficient and economic
solutions especially for seismic applications.

The relative ease of global information retrieval and exchange systems, coupled
with the momentum established by micropile researchers in the mid 19903 will ensure
that developrnents in micropile technology will continue apace, and provide a fitting
reflection of the foresight of their progenitor, Fernando Lizzi,
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